首页 > 众包知识 > 工业设计  > 设计优化
结构优化设计
结构优化设计
结构优化设计在给定约束条件下,按某种目标(如重量最轻、成本最低、刚度最大等)求出最好的设计方案,曾称为结构最佳设计或结构最优设计,相对于“结构分析”而言,又称“结构综合”;如以结构的重量最小为目标,则称为最小重量设计。...
1结构优化设计定义
  结构优化设计在给定约束条件下,按某种目标(如重量最轻、成本最低、刚度最大等)求出最好的设计方案,曾称为结构最佳设计或结构最优设计,相对于“结构分析”而言,又称“结构综合”;如以结构的重量最小为目标,则称为最小重量设计。

  传统的结构优化设计,实际上指的是结构分析,其过程大致是假设-分析-校核-重新设计。重新设计的目的也是要选择一个合理的方案,但它只属分析的范畴;且只能凭设计者的经验作很少几次重复以通过“校核”为满足。

  结构优化指的是结构综合,其过程大致可归纳为:假定-分析-搜索-最优设计四个阶段。其中的搜索过程是修改并优化的过程。它首先判断设计方案是否达到最优(包括满足各种给定的条件),如若不是,则按某种规则进行修改,以求逐步达到预定的最优指标。

  结构优化设计的设想由来已久。J.C.麦克斯韦于1854年和J.H.米歇尔于1905年就曾研究过在不加任何形状约束条件下桁架式结构的最优布局问题。他们的工作在理论上有一定意义,但所得结果往往在工艺上无法实现。

.......


查看全文 >>
2结构优化设计基本概念
  结构优化设计的数学模型,结构优化设计可定义为:对于已知的给定参数,求出满足全部约束条件并使目标函数取最小值的设计变量的解。

  设计变量指在设计过程中所要选择的描述结构特性的量,它的数值是可变的。设计变量可以是各个构件的截面尺寸、面积、惯性矩等设计截面的几何参数,也可以是柱的高度、梁的间距、拱的矢高和节点坐标等结构总体的几何参数。设计变量通常有连续设计变量和离散设计变量两种类型。

  连续设计变量。这类变量在优化过程中是连续变化的,如拱的矢高和节点坐标等。

  离散设计变量。这类变量在优化中是跳跃式变化的,如可供选用的型钢的截面面积和钢筋的直径都是不连续的。

  目标函数是用来衡量设计好坏的指标。采用何种指标来反映设计好坏与结构本身的技术经济特性有关。通常采用的目标函数有:结构重量、结构体积、结构造价三种。

.......


查看全文 >>
3结构优化设计数学模型
  轻钢结构设计的最终目的是要给出一个经济合理的设计方案。优化设计方法,能较好地适应这方面的要求。轻钢结构采用优化设计,对于减轻结构重量、降低用钢量和结构造价有着明显的意义。

  目前国内对轻钢结构的优化设计已进行了一些研究和应用,编制了相应的计算程序,利用计算机实现了对截面的自动优选以求得重量最小、用料最省或造价最低的设计方案。这对于提高轻钢结构的设计质量,加快设计进程都起了一定的作用。

  轻钢结构的主要几何参数如跨度、檐口高、屋面坡度、纵向柱间距等通常由业主或建筑师确定。可供优化的变量主要是截面参数。具体说,就是各工字钢截面的翼缘宽、厚,腹板的高、厚等。钢板的厚度是离散变量,而腹板和翼缘的高(宽)一般也是从一系列有规律的数中选取,因此轻钢结构的设计变量通常是离散变量。

  目标函数,结构重量是轻钢结构优化设计的重要指标,且比较容易写成设计变量的函数形式,故轻钢结构通常以用钢量最少为优化目标。

.......


查看全文 >>
4结构优化设计方法简介
  准则法是从工程和力学观点出发,提出结构达到优化设计时应满足的某些准则(如同步失效准则、满应力准则、能量准则等),然后用迭代的方法求出满足这些准则的解。

  该方法的主要特点是收敛快,重分析次数与设计变量数目无直接关系,计算量不大,但适用有局限性,主要适用于结构布局及几何形状已定的情况。尽管准则法有它的缺点,但从工程应用的角度来看,它比较方便,习惯上易于接受,优点仍是主要的。最简单的准则法有同步失效准则法和满应力准则法。

  同步失效准则法。其基本思想可概括为:在荷载作用下,能使所有可能发生的破坏模式同时实现的结构是最优的结构。同步失效准则设计有许多明显的缺点。由于要用解析表达式进行代数运算,同步失效设计只能用来处理非常简单的元件优化;当约束数大于设计变量数时,必须设法确定那些破坏模式应当同时发生才给出最优设计,这通常是一件十分困难的工作;当约束数和设计变量数相等时,并不能保证这样求得的解是最优解。

  满应力准则法。该法认为充分发挥材料强度的潜力,可以算是结构优化的一个标志,以杆件满应力作为优化设计的准则。这一方法在杆件系统如桁架的优化设计中用得较多。在此基础上又发展了与射线步结合的齿行法以及框架等复杂结构的满应力设计。

.......


查看全文 >>
5结构优化设计基本方法
  数学规划法的命题是:求n个变量xi(i=l,2,…,n),满足m个约束条件Gj(xi)≤0 (j=l,2,…,m),且使目标函数W(xi)为最小(或最大)。如果约束条件和目标函数都是xi的线性函数,这便是线性规划问题,已有成熟的解法;如果在这些函数中有一个是非线性函数,便成为非线性规划问题。随着非线性函数的性质和形式的不同,非线性规划问题有很多类型,特殊的解法很多,在应用上各有局限性,没有普遍适用的最好解法。

  用数学规划法来作结构优化设计,变量xi便代表可以变化的各种结构参数,如元件截面积或厚度、节点位置、材料性质等;约束条件Gj(xi)≤0代表设计必须满足的各种限制,例如结构各部位的静应力,动应力或变位不得超过规定的容许值,元件的截面或厚度尺寸不得超出给定的范围,结构的频率不应落在某个禁区,结构的失稳临界力或飞行器的颤振速度不得小于某一下限,等等;而目标函数则代表结构优化所追求的指标,例如,结构重量最小和成本最低等可以定量的指标;也可将重量、造价作为约束条件,而把某种结构性能,例如刚度作为目标函数。

  数学规划法的基本目的是,在以设计变量为坐标的多维空间里搜索最优点。如果有n个设计变量,则相应的n维设计变量空间中的每个点都代表一个设计方案。在无限多的点中要尽快地搜索出既满足所有的约束条件,又能使目标函数尽量接近最小值(或最大值)的点,就是数学规划设计法的任务,这种搜索的过程称为“优化过程”。

.......


查看全文 >>

相关成功案例

设计优化方案
免费预约
相关知识
结构优化设计基本方法结构优化设计方法简介结构优化设计数学模型结构优化设计基本概念结构优化设计定义